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WIMP Direct Detection

Look for anomalous nuclear recoils in a low-
background detector.

R=Npo<v>
From <v> =220 km/s, get order of 10 keV deposited

Requirements:

* Low radioactivity

* Low energy threshold
* Gamma ray rejection
e Scalability



Predicted nuclear recoil spectra from WIMP-nucleus scattering
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Background sources and shielding in a typical dark matter experiment.

Need sensitivity of better than 1 event/100kg/year
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WIMP Direct Detection Technologies

* Cryogenic Ge detectors (CDMS,
Edelweiss, CRESST): Excellent
background rejection, low
threshold and good energy
resolution.

 Threshold detectors (COUPP,
SIMPLE, PICASSO): Ultimate
electron recoil rejection,
inexpensive, easy to change
target material for both Sl and
SD sensitivity.

e Single-phase LAr, LXe (DEAP,
CLEAN, XMASS): Simple and
relatively inexpensive per tonne,
pulse-shape discrimination and
self-shielding.




WIMP Direct Detection Technologies

* Dual-phase Ar (DarkSide, ArDM):
Excellent electron recoil rejection,
position resolution.

* Dual-phase Xe (XENON, LUX, Panda-X):
Suitable target for both Sl and SD, low
energy threshold, excellent position
resolution, self-shielding.

* Scintillating crystals (DAMA/LIBRA, KIMS):
Annual modulation with large target mass.

* lonization detectors (CoGeNT, DAMIC):
Very low energy threshold, good energy

resolution.
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WIMP Directional Detectors
(DRIFT, DMTPC, D”A3, MIMAC, NEWAGE, NEXT/Osprey)
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In the long run, directional detection will allow one to map out the velocity
distribution of the dark matter in the galactic halo, and could serve as an important
input to modeling of the detailed formation history and dynamics of the galaxy.
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This field has seen tremendous progress over the past 25 years

Evolution of the o for a 50 GeV/c* WIMP
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... and this progress is expected to continue.

Evolution of the g for a 50 GeV/c? WIMP
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The resolution of these conflicts can only be achieved by observations with lower
background, lower threshold, and higher discrimination detectors to either confirm
or reject hints in the same target nuclei and then correlate with the magnitude of
such signals in other targets. This will require improvement of existing detectors or
development of new techniques.



WIMP-nucleon cross section [cm?]

Existing and projected spin-independent cross-section limits
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WIMP-nucleon cross section [cm?]
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SD WIMP-neutron cross section [cm2]

Spin-dependent cross-section limits

In spin-dependent coupling, the WIMP interacts with the free spin of the target, typically
Parameterized as a neutron- or proton-spin dependent cross-section.
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Axion Detection

Dark matter axions may be converted into photons in a high
magnetic field. ADMX (a resonant cavity axion detector) is
sensitive to axions in the mass range 1 ueV to 100 peV.
Ongoing R&D to push to higher mass (higher frequency cavities)
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Axion detection: existing limits and future projections

SN 1987A
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CF3. For direct detection, when is the right time to move from small projects toward
larger ones?

Any new project should either be testing a putative WIMP signal, or have substantially
better (~order of magnitude) sensitivity to WIMP-nucleon cross-section in some mass
range. With high-mass WIMP sensitivities continuing to improve rapidly from one year
to the next, it simply isn't possible to stay competitive without scaling up in target
mass. The programmatic move from smaller to larger projects in the US is already part
of DOE and NSF strategy, starting with the selection of a subset of so-called “Second
Generation” dark matter detectors, and looking forward to worldwide collaboration on
a few large scale “Third Generation” installations. On the other hand, if a putative
WIMP signal is seen (such as the current indications at 8.6 GeV), then it can make
sense to test the signal with several approaches, involving multiple targets and
technologies. In this case there is less emphasis on scaling to a few large projects, and
more emphasis on multiple, smaller experiments to test the signal.



Solar and atmospheric neutrino fluxes
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Coherent neutrino-nucleus scattering events
(Billard, Strigari, and Figeroa-Feliciano, arXiv:1307.5458)
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WIMP sensitivity limits, given coherent neutrino scattering background
(Billard, Strigari, and Figeroa-Feliciano, arXiv:1307.5458)
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CF4. Dark matter direct detection will reach the neutrino background at some
stage. Although this background is not formally irreducible, is it realistic to think
that one could go beyond this? What experiments would make this possible in a
cost-effective way?

Achieving sensitivities below the neutrino floor will require extremely large
detectors capable of disentangling the small energy dependence of neutrino and
WIMP-induced signal. In this case, maintaining stable operation to be sensitive to
annual modulation can provide an additional constraint. Better understanding of
solar and atmospheric neutrino physics can narrow down the neutrino spectrum
normalization and aid in background subtraction. Detectors with directional
capability and head-tail discrimination can also push beyond the neutrino floor,
provided they are very large, of mass 10 tons and above.



CF5. To what level should we continue to search directly for WIMP dark matter
in the absence of a convincing signal? Is there a technique, or a motivation, to
search beyond the neutrino floor? Is there a natural stopping point for direct
DM searches?

The neutrino floor may be a natural stopping point if the cost of detectors with
masses in the tens of tons is prohibitively high or if a path to comparable size
directional detector technology cannot be demonstrated. However, from the
theory side, there are compelling models that predict a variety of dark matter
masses with small cross-sections, motivating continued exploration of WIMP
cross-sections beyond the neutrino floor, across a wide range of WIMP masses.



